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Abstract. Simple and accurate formulae for the eigenvalues of the Hamiltonian with an
anharmonic double-well potential are presented. Special attention is paid to the following
three regions of coupling parameters where difficulties arise. (i) In the weak coupling limit,
the eigenvalues depend on the coupling parameter nonanalytically. To obtain accurate explicit
expressions in this limit, acomposite asymptotic expansionis applied. (ii) In the strong coupling
limit, the derivation of asymptotic expansions is obstructed by the nonuniqueness of solutions to
variational equations. To overcome this obstacle, arestricted variational procedureis suggested.
(iii) There exist also critical values of the coupling parameter at which eigenvalues cross zero.
In the regions around these critical values a dramatic increase of the percentage error occurs. A
remedy against this critical behaviour is thepositive definite shiftremoving the critical regions.
The formulae obtained for the eigenvalues provide an accuracy within the errors not exceeding
3% for all values of the coupling parameter, from zero to infinity.

1. Introduction

Different variational calculations are widely used in quantum mechanics, statistical
mechanics and field theory. In quantum-mechanical problems, variational parameters are
normally incorporated into trial wavefunctions and trial Hamiltonians. Minimization of the
ground-state energy with respect to such variational parameters is the famous Rayleigh–
Ritz method. Accurate approximations for excited states can also be obtained by means
of variational procedures [1–10]. In field theory, one includes variational parameters into
a trial Gaussian action [2, 11–14], which is equivalent to the inclusion of such parameters
into a trial Hamiltonian in statistical mechanics [15].

Among nonstandard variational procedures, we may mention the method of potential
envelopes [16–18] where the minimization of eigenenergies is defined with respect to
average kinetic energy. In the variational coherent anomaly method [19], one extremizes the
free energy with respect to parameters of a gauge transformation. In the minimum-element
approach [20], the perturbation series is varied with respect to the number of perturbation
order.

One of the most interesting and difficult cases is that of Hamiltonian with an anharmonic
double-well potential. This problem not only serves as a good illustration of difficulties
characteristic of approximate calculations for nontrivial potentials, but is of interest
itself, since double-well potentials model various phenomena encountered in physics and
chemistry. The spectrum of the Hamiltonian with an anharmonic double-well potential
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has been considered in several approximations of quasiclassical nature [21–24]. The
quasiclassical approximation [24] is the most inaccurate for low lying levels where its error
is about 20%. There are more accurate numerical calculations, notable among which are:
a variational approach employing the particle-in-box trial functions with two separate bases
for even and odd states [24], the finite-difference technique [25], the hypervirial recurrence-
relation scheme [26–28], the renormalized hypervirial-Padé scheme [29–31], the variational
matrix solution [32], the Rayleigh–Ritz variational method supplemented by the Lanczos
algorithm [33], and the Brillouin–Wigner perturbation theory based on shifted oscillator
variational functions [34]. The most difficult for the double-well potential is the calculation
of the low lying nearly degenerate states for which even quite sophisticated techniques, such
as the renormalized hypervirial-Padé scheme [29–31], fail.

Although there exist methods [32–34], involving extensive numerical calculations,
which permit one to get accurate eigenvalues for the double-well potential, it would
also be important to have explicit analytical expressions for these eigenvalues. Such
explicit expressions should be sufficiently simple and accurate providing correct asymptotic
expansions for both weak and strong coupling limits. However, in reaching this goal one is
confronted with the following obstacles. (i) In the weak coupling limit, the dependence of
eigenvalues on the coupling parameter is nonanalytical, that the expansion in powers of this
parameter kills the level splitting characteristic of the double-well potential. (ii) Variational
equations being, generally, nonlinear often have nonunique solutions for trial parameters. If
some of these solutions are close to each other, it is difficult, if at all possible, to distinguish
between them. Precisely this case occurs in the strong coupling limit of the double-well
potential. (iii) In the intermediate region of the coupling parameter, points may exist at
which some eigenvalues cross zero. Such points can be called critical because in their
neighbourhood the errors of approximate calculations dramatically increase.

Below, we obtain simple analytical formulae for the spectrum of the Hamiltonian with
an anharmonic double-well potential. We give recipes for treating the difficulties outlined
above. This permits us to derive accurate asymptotic expansions for the weak coupling as
well as strong coupling limits. The main attention we pay to the most difficult case of low
lying states, showing that even for them our formulae provide quite accurate results within
an error not exceeding 3% in the whole range of the coupling parameter, from zero to
infinity. These results, if one wishes to improve accuracy, serve as a starting approximation
for an iteration procedure.

2. Double-well potential

We consider a model with the double-well potential described by the Hamiltonian

Ĥ = − 1

2m

d2

dx2
− 1

2
mω2x2 + λm2x4 (1)

in which x ∈ R, andm, ω and λ are positive constants. By scaling, it is convenient to
reduce (1) to the dimensionless form

H = −1

2

d2

dx2
− 1

2
x2 + gx4 (2)

whose eigenvalues are related to those of (1), denoted byE(λ), as

e(g) = E(λ)

ω
g ≡ λ

ω3
. (3)
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To return from (2) to (1), one should make the substitution

x → √
mωx H → Ĥ /ω.

As a trial wavefunction for (2) it is natural to take the linear combination

ψ(0)
n (x) = Aϕ+

n (x)+ Bϕ−
n (x) (4)

of the shifted oscillator functions

ϕ±
n (x) ≡ ϕn(x ± σ)

ϕn(x) = (u/π)1/4√
2nn!

exp

(
−1

2
ux2

)
Hn(

√
ux)

(5)

in which Hn(·) is a Hermite polynomial, andn = 0, 1, 2, . . .. Normalizing the functions
(4),

‖ψn‖2 ≡ (ψn, ψn) = 1 (6)

we have

A2 + 2ηAB + B2 = 1 (7)

where

η ≡ (ϕ+
n , ϕ

−
n ) (8)

is the overlap integral. Equation (7) can be treated as definingB = B(A).
Thus, there are three variational parameters:u, σ andA, to be found by extremizing

the energy

En(g, u, σ,A) = (ψn,Hψn). (9)

From the variational equation

∂

∂A
En(g, u, σ,A) = 0 (10)

we find two parameters

A+ = 1√
2(1 + η)

A− = 1√
2(1 − η)

(11)

and, respectively, from (7) we get

B(A+) = A+ B(A−) = −A−

which reflects the existence of two kinds of states, symmetric and antisymmetric. Since
the variational equations are written for each level labelled by the indexn = 0, 1, 2, . . .,
variational parameters, certainly, also depend on the numbern. However, for the sake of
notation brevity, we do not show this dependence explicitly.

For the energy levels (9) we have

E+(g, u, σ ) ≡ En(g, u, σ,A
+) = p + q

1 + η
(12)

and

E−(g, u, σ ) ≡ En(g, u, σ,A
−) = p − q

1 − η
(13)

where the notation

p ≡ (ϕ+
n ,Hϕ

+
n ) = (ϕ−

n ,Hϕ
−
n )

q ≡ (ϕ+
n ,Hϕ

−
n ) = (ϕ−

n ,Hϕ
+
n )

(14)
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is used. Whenϕ+
n does not coincide withϕ−

n , that is if σ 6= 0, then

|η| = |(ϕ+
n , ϕ

−
n )| < ‖ϕ+

n ‖ · ‖ϕ−
n ‖ = 1

and the denominators in (12) and (13) do not contain zeros. The wavefunction

ψ+
n (x) = A+[ϕn(x + σ)+ ϕn(x − σ)] (15)

is symmetric forn even and antisymmetric forn odd. Conversely,

ψ−
n (x) = A−[ϕn(x + σ)− ϕn(x − σ)] (16)

is antisymmetric forn even and symmetric forn odd. In the case ofn = 0, the level (12)
gives the ground-state energy and (13), the first excited energy level.

With the wavefunctions (5), for the parameters in (14) we obtain

p = 1
2(n+ 1

2)u− 1
2(n+ 1

2 + ξ)
1

u
+ 1

2[3(n2 + n+ 1
2)+ 12(n+ 1

2)ξ + 2ξ2]
g

u2

q = 1
2e−ξ

{
[(2n+ 3

2 − ξ)L0
n(2ξ)− L1

n(2ξ)]u− 1
2[2L1

n(2ξ)− L0
n(2ξ)]

1

u

+ 3
2[L0

n(2ξ)− 4L1
n(2ξ)+ 4L2

n(2ξ)]
g

u2

} (17)

where

Lln(ξ) = 1

n!
eξ ξ−l dn

dξn
(e−ξ ξn+l) =

n∑
m=0

0(n+ l + 1)(−ξ)m
0(m+ l + 1)(n−m)!m!

is the associate Laguerre polynomial, and

ξ ≡ uσ 2. (18)

The overlap integral (8) becomes

η = e−ξL0
n(2ξ). (19)

For the casen = 0, this simplifies to

p = 1

4

[
u− (1 + 2ξ)

1

u
+ (3 + 12ξ + 4ξ2)

g

u2

]
q = 1

4
e−ξ

[
(1 − 2ξ)u− 1

u
+ 3

g

u2

]
η = e−ξ (n = 0).

(20)

3. Variational solution

The variational equations for the parametersu andσ are

∂

∂u
E±(g, u, σ ) = 0

∂

∂σ
E±(g, u, σ ) = 0 (21)

which defineu±(g) andσ±(g). Substituting the latter back into (12) and (13), we obtain

e±(g) ≡ E±(g, u±(g), σ±(g)). (22)



Asymptotic properties of eigenvalues 6433

The most difficult problem for the double-well potential, as is known, is the calculation
of low-lying energy levels. Therefore we shall pay greatest attention in what follows just
to these states. The ground state corresponds ton = 0 and

u = u+(g) σ = σ+(g)

ξ = u+(g)[σ+(g)]2 = ξ+(g)
η = exp{−ξ+(g)} = η+(g).

(23)

The variational equations in (21) give

u3 + (1 − 2ξ)ηu3 + (1 + 2ξ + η)u− 2g(3 + 12ξ + 4ξ2 + 3η) = 0

(1 − ξ + η)ηu3 + u+ (1 + ξ)ηu− 2g(3 + 2ξ)− 2gη(3 + 5ξ + ξ2) = 0.
(24)

The solution of (24) defines the ground-state energy

e+(g) = 1

8u

(
3u2 − 1 − 2ξ

1 + 3ηu2

1 + η

)
. (25)

The first excited state corresponds ton = 0 and

u = u−(g) σ = σ−(g)

ξ = u−(g)[σ−(g)]2 = ξ−(g)
η = exp{−ξ−(g)} = η−(g).

(26)

The variational equations for this case, following from (21), are almost the same as (24),
and differ from (24) only by the changeη → −η. The energy of the first excited level is

e−(g) = 1

8u

(
3u2 − 1 − 2ξ

1 − 3ηu2

1 − η

)
. (27)

An important quantity is the gap

1(g) ≡ e−(g)− e+(g) (28)

between the energy levels (27) and (25). This gap is proportional to the exponential of the
instanton action [22]. Calculating (28) we should not forget thatu, ξ and η are different
for (25) and (27), being defined as (23) and (26), respectively.

To find (25) and (27), we need to solve the variational equations, that is (24) and the
related equations in whichη is replaced by(−η). These equations, for any value of the
coupling parameterg, always have two solutions for each of the quantities,u+ andσ+ as
well as foru− andσ−. One solution containsσ± = 0; anotherσ± 6= 0. The first of these
solutions, as is clear, corresponds to a single-well potential, while the second corresponds
to a double-well potential. Therefore, we need to separate out the second solution with
σ± 6= 0. This is straightforward in the weak coupling limit, whenσ± → ∞, but not in the
strong coupling limit, whenσ± → 0.

Wishing to derive an asymptotic expansion for the weak coupling limit, one encounters
another problem. An expansion in powers ofg kills the level splitting makinge+(g) and
e−(g) coincide. To overcome this deficiency, we invoke the so-calledcomposite asymptotic
expansion: first, we look for an expansion with respect to two parameters,g and η, and
then considerη = η(g) as a function ofg. This gives us

u±(g) ' u0(g)∓ a(g)η(g)

ξ±(g) ' ξ0(g)∓ b(g)η(g)

σ±(g) ' σ0(g)∓ c(g)η(g)

(29)
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whereg → 0 and the overlap integral is

η(g) = exp

(
− 1

2
√

2
g−1 + 9

4
+ 27

8
√

2
g

)
. (30)

Other functions in (29) are

u0(g) =
√

2 − 3g − 27

2
√

2
g2

ξ0(g) = 1

2
√

2
g−1 − 9

4
− 27

8
√

2
g

σ0(g) = 1

2
g−1/2 − 3

2
√

2
g1/2

a(g) = 3

16
√

2
g−2 − 17

8
g−1 + 561

64
√

2
+ 27

2
g

b(g) = 3

64
√

2
g−3 − 11

32
g−2 − 559

256
√

2
g−1 + 207

16
+ 78 057

2048
√

2
g

c(g) = 21

64
√

2
g−3/2 + 125 289

4096
g−1/2 + 425 811

2048
√

2
g1/2.

(31)

Substituting (29)–(31) into (25) and (27), we obtain

e±(g) ' e0(g)∓ 1
21(g) (32)

where

e0(g) = − 1

16
g−1 + 1√

2
− 21

64
g (33)

and the gap (28) is

1(g) =
(

303

1024
g−1 − 981

512
√

2
+ 10 773

8192
g

)
η(g). (34)

Leaving in (34) and (30) only the main terms, we see that the splitting gap

1(g) ' 303

1024
g−1 exp

(
− 1

2
√

2
g−1

)
(35)

becomes exponentially small atg � 1 and disappears asg → 0. This effect is called
quasidegeneracy. The composite asymptotic expansion permits us to describe the splitting
of the levels in (32).

4. Restricted variation

As discussed above, the variational equation (24) has nonunique solutions, one
corresponding to a single-well potential and another related to the double-well potential.
These solutions become close to each other atg � 1 making it difficult to write a
correct asymptotic expansion for the strong coupling limit asg → ∞. To eliminate this
nonuniqueness separating out the correct solution, therestricted variational procedurecan
be employed. To this end, we notice that the potential of the Hamiltonian (2), that is

V (x) = − 1
2x

2 + gx4 (36)

has the minimum

min
x∈R

V (x) = V (x±) = − 1

16g
(37)
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at the coordinates

x± = ± 1

2
√
g

≡ x±(g). (38)

In order to rule out the solution with the zeroσ±, let us impose the constraint

σ± ≡ x±(g) = ± 1

2
√
g

(39)

restricting the shifts of the position of the minimum (37) by the nonzero values in (38).
Considering the functions

ξ±(g) = u±(g)
4g

η±(g) = exp{−ξ±(g)} (40)

under the constraint (39), in place of (20), we have

p = 1

4

(
u− 1

4g
+ 2

u
+ 3g

u2

)
q = 1

4

(
u− u2

2g
− 1

u
+ 3g

u2

)
exp

(
− u

4g

)
.

(41)

Now, instead of two equations in (21), we have one variational equation

∂

∂u
E±(g, u, x±) = 0. (42)

For the ground-state levelE+ this yields

64ηg2ξ5 − 128η(1 + η)g2ξ4 + 32(1 + η)2g2ξ3 − 2ηξ3 + 6ηξ2

−2(1 + η)(2 − η)ξ − 3(1 + η)2 = 0. (43)

For the first excited levelE−, the variational equation is similar to (43) with the change
η → −η. Equation (43), in contrast to (24), does not contain the zero solution forξ . In
the weak coupling limit, the restricted variational approach gives the following composite
asymptotic expansions:

u± ' u0(g)∓ a(g)η(g)

ξ±(g) ' ξ0(g)∓ b(g)η(g)
(44)

whereg → 0 and the overlap integral is

η(g) = exp

(
− 1

2
√

2
g−1 − 3

8
+ 27

32
√

2
g − 27

16
g2

)
(45)

other functions being

u0(g) =
√

2 + 3

2
g − 27

8
√

2
g2

ξ0(g) = 1

2
√

2
g−1 + 3

8
− 27

32
√

2
g + 27

16
g2

a(g) = 3

16
√

2
g−2 − 1

4
g−1 − 207

256
√

2
− 9

64
g + 101385

8192
√

2
g2

b(g) = 3

64
√

2
g−3 − 1

16
g−2 − 207

1024
g−1 − 9

256
+ 101 385

32 768
√

2
g − 1 683 261

131 072
g2.

(46)
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The eigenvalues in this limit have the same form as in (32) with

e0(g) = − 1

16
g−1 + 1√

2
+ 3

8
g (47)

and the splitting gap

1(g) =
(

3

8
g−1 + 3√

2
− 9

4
g

)
η(g). (48)

Comparing our analytical results with numerical calculations [32–34], we find that, in
the weak coupling limit, the accuracy of the restricted variational procedure is slightly worse
than the accuracy of the procedure in section 3. However, the advantage of the restricted
variational procedure comes into play in the strong coupling limit, where it has the same
accuracy as the procedure of section 3 but, in contrast to the latter, allows a straightforward
asymptotic expansion. Thus, in the strong coupling limit we get

u+(g) ' (6g)1/3 − 1
3(6g)

−1/3 + 5
16(6g)

−1 − 119
1296(6g)

−5/3 + 4171
62 208(6g)

−7/3

u−(g) ' (10g)1/3 − 8
9(10g)−1/3 + 65

48(10g)−1 − 4241
4374(10g)−5/3 + 4 897 291

5 038 848(10g)−7/3.

This leads to the eigenvalues

e+(g) ' 3
8(6g)

1/3 − 1
4(6g)

−1/3 + 17
24(6g)

−1

e−(g) ' 9
8(10g)1/3 − 3

4(10g)−1/3 + 287
144(10g)−1

(49)

for g → ∞, with the gap (28) becoming

1(g) ' 1.742 319g1/3 − 0.210 539g−1/3 + 0.081 250g−1. (50)

The leading terms ofe+(g) and e−(g) correspond to the ground state and first excited
level of the single-well anharmonic oscillator [6, 7], respectively. But the following terms
are, of course, different; the energy levels of the double-well oscillator are lower than the
corresponding levels of the single-well oscillator.

5. Positive shift

Let us compare in detail the results of our variational calculations with the numerical data
[32–34] that can be considered as exact. Denoting the latter throughE±(g), we characterize
the accuracy of the approximate valuese±(g) by the percentage error.

ε±(g) ≡ e±(g)− E±(g)
|E±(g)| × 100%. (51)

When either the level numbern � 1 or the coupling parameterg � 1, we are very
close to the case of the single-well anharmonic oscillator [6, 7]; the error (51) being about
the same as that of the latter, that is not exceeding 2%. The worst accuracy for the double-
well potential is whenn = 0 andg < 0.5. Therefore we must pay greatest attention just
to this region. The accuracy of the eigenvalues (25) and (27) forg < 1.5 is illustrated
by table 1. One can immediately notice that there is a dangerous region of the coupling
parameters inside the interval 0.03< g < 0.3, where the error (51) strongly increases. Does
this signify a drawback of the calculational procedure?

We can sharpen the question even more by noticing that, varyingg, we can always find
such critical values ofg for which

E±(g) = 0 g = g±
c . (52)
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Table 1. The accuracy of the variational eigenvaluese±(g) for the double-well oscillator in the
most dangerous region ofg where the errorsε±(g) are maximal.

g E+(g) ε+(g) (%) E−(g) ε−(g) (%)

0.000 500 −124.29 0.0014 −124.29 0.0014
0.001 414 −43.488 0.0008 −43.488 0.0008
0.003 043 −19.836 0.0039 −19.836 0.0039
0.008 607 −6.5635 0.034 −6.5635 0.034
0.015 811 −3.2625 0.14 −3.2625 0.14
0.026 997 −1.6387 0.55 −1.6371 0.47
0.044 721 −0.762 52 2.8 −0.726 88 1.0
0.062 500 −0.427 60 3.5 −0.311 97 1.8
0.176 780 0.04872 5.0 0.605 64 0.39
0.500 000 0.328 82 0.37 1.4172 0.12
1.414 200 0.615 20 0.17 2.3574 0.076

At such critical pointsg±
c , where the eigenvalues cross zero, the error (51) diverges:

ε±(g) → ∞. Does it mean the failure of the procedure?
No. This only means that the problem is incorrectly posed and should be modified so

as to avoid the appearance of zeros in the denominator of (51). The latter can be done by
shifting the Hamiltonian (2) with a nonoperator termπ(g) getting

Hπ ≡ H + π(g) π(g) >
∣∣∣ min
x∈R

V (x)

∣∣∣ (53)

where the potentialV (x) is defined in (36). Because of the nonoperator character of the
shift π(g), the problem is mathematically the same. But as far as the shifted potential
V (x)+ π(g) > 0 is non-negative, the shifted eigenvalues of (2) are positive:

E±
π (g) ≡ E±(g)+ π(g) > 0. (54)

The accuracy of the shifted approximate eigenvalues

e±π (g) ≡ e±(g)+ π(g) (55)

is characterized by the error

ε±
π (g) ≡ e±π (g)− E±

π (g)

|E±
π (g)|

× 100%. (56)

The latter, owing to (54), never contains zeros in the denominator. The errors (51) and (56)
are connected through the relation

ε±
π (g) = ε±(g)

∣∣∣∣E±(g)
E±
π (g)

∣∣∣∣ .
Thus, shifting a Hamiltonian in order to make its spectrum positive definite one gets
positive definite shift. This way of shifting the sought quantities can be used not only
for calculating the spectra of Hamiltonians but for any other cases in which one encounters
similar incorrectness in defining the errors.

It is reasonable to choose the shiftπ(g) as

π(g) ≡
∣∣∣ min
x∈R

V (x)

∣∣∣ = 1

16g
. (57)

Then we may easily redefine all formulae for the eigenvalues obtained in the previous
sections. For example, in the weak coupling limit, for the shifted eigenvalues we have

e±π (g) ' e0
π (g)∓ 1

21(g) (g → 0) (58)
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with

e0
π (g) = 1√

2
− 21

64
g (59)

and the same splitting gap as in (34). And in the strong coupling limit we obtain

e+π (g) ' 3
8(6g)

1/3 − 1
4(6g)

−1/3 + 13
12(6g)

−1

e−π (g) ' 9
8(10g)1/3 − 3

4(10g)−1/3 + 377
144(10g)−1

(60)

where g → ∞; the gap1(g) being the same as in (50). The accuracy of the shifted
eigenvalues (55), in the most dangerous region ofg where the errors are maximal, is
illustrated in table 2. Now the maximal error is about 3%.

Table 2. The accuracy of the shifted eigenvaluese±π (g) in the dangerous region ofg, as
compared to the shifted numerical valuesE±

π (g).

g E+
π (g) ε+π (g) (%) E−

π (g) ε−π (g) (%)

0.000 500 0.710 00 0.25 0.710 00 0.25
0.001 414 0.712 85 0.049 0.712 85 0.049
0.003 043 0.702 94 0.11 0.702 94 0.11
0.008 607 0.698 03 0.32 0.698 03 0.32
0.015 811 0.690 44 0.66 0.690 44 0.66
0.026 997 0.676 37 1.3 0.677 97 1.1
0.044 721 0.635 03 3.3 0.670 67 1.1
0.062 500 0.572 40 2.6 0.688 03 0.82
0.176 780 0.402 27 0.61 0.959 19 0.25
0.500 000 0.453 82 0.27 1.5422 0.11
1.414 200 0.659 39 0.16 2.4016 0.075

6. Higher approximations

Our main goal here has been to show the ways of obtaining analytical formulae which
would be simple and at the same time sufficiently accurate. The accuracy achieved, within
the error of 3%, seems to be quite reasonable for such simple calculations. This accuracy
is practically the same as for the single-well anharmonic oscillator [6, 7] for which the
renormalized first-order perturbation theory gives the maximal error of 2%.

Singe-shot approximations have always been very important in quantum mechanics
allowing us to grasp the principal features of the problem under consideration. This is
especially true when such a first approximation successively combines relative simplicity
with reasonable accuracy.

However, some dissatisfaction remains when there is no indication of a possible way
for a systematic improvement of the results so that an arbitrary accuracy could be achieved
if desired. To get rid of this dissatisfaction, we need to delineate a scheme permitting us
to obtain successive approximations. In our case, we cannot simply resort to the standard
Rayleigh-Schr̈odinger perturbation theory since we started with a trial wavefunction but the
corresponding approximate Hamiltonian was not defined. Another, although not as serious
hindrance, is that the basis of trial wavefunctions in (4) is not orthogonal. Nevertheless, a
consistent scheme can be constructed with the help of some iteration procedure [34, 35]—
this idea is clearly based on the Brillouin–Wigner perturbation theory.
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Consider the eigenproblem

Hψn = Enψn (ψm,ψn) = δmn (61)

whose rigorous solution cannot be found analytically. Let us start, as we did above, with a
basis{ψ(0)

n } of trial wavefunctions. These functions can always be normalized but they are
not necessarily orthogonal, that is, in the scalar product

αmn ≡ (ψ(0)
m , ψ(0)

n ) αnn = 1 (62)

the nondiagonal elementsαmn are not, generally, zero.
Expand the solution of (61) in the basis{ψ(0)

n }, so that

ψn =
∑
j

cnjψ
(0)
j cnn = 1 (63)

where the equalitycnn = 1 is a necessary condition for the validity of (63) in the case when
ψ(0)
n → ψn. Substituting (63) into (61) and taking a scalar product withψ(0)

m , we get∑
j

cnj (Hmj − Enαmj ) = 0 (64)

where we use the notation

Hmn ≡ (ψ(0)
m ,Hψ(0)

n ). (65)

Separating in (64) the term withj = n from those withj 6= n, we have

cmn = −
∑
j (6=n)

cmj
Emαnj −Hnj

Em −Hnn
(66)

and on the other hand (64) yields

En =
∑
j cnjHnj∑
j cnjαnj

. (67)

Equations (66) and (67) are the equations definingcmn andEn. We stress that until now
no approximation has been used. So, (66) and (67) are exact relations.

The solution of (66) and (67) can be realized through the iteration procedure given by
the scheme

E(k+1)
n =

∑
j c

(k)
nj Hnj∑

j c
(k)
nj αnj

(68)

where the upper index stands for an iteration step and the coefficients are

c(k+1)
mn = −

∑
j (6=n)

c
(k)
mj

E(k+1)
m αnj −Hnj

E
(k+1)
m −Hnn

. (69)

Note that for realizing this iteration procedure we do not need to have some initial
approximate Hamiltonian. All we need is to choose a basis{ψ(0)

n }, not necessarily
orthogonal, and then, after calculating the matrix element (65), we directly follow the
iteration scheme (68) and (69). Thus, starting fromc(0)nj = δnj , we get the natural first
approximation for the spectrum

E(1)n = Hnn (70)

following from (68). Then, from (69) we find

c(1)mn = −E
(1)
m αnm −Hnm

E
(1)
m −Hnn

.
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The foundc(1)mn is to be substituted into (68), which givesE(2)n , and so on. In this way,
we can proceed until any approximation order desired. The variational parameters entering
into the trial wavefunction are to be defined at each step of the procedure. In the case
of several choices, the optimal parameters are those that provide the better stability of
numerical calculations [36, 37].

For the double-well oscillator, the basis{ψ(0)
n } is made of the trial wavefunctions in (4).

The iteration procedure converged sufficiently fast, so that a few first iterations yield the
eigenvaluesE±(g) from table 1, or respectively,E±

π (g) from the table 2, which have been
treated as exact numerical results [32–34]. The number of iteration steps depends on the
value of the coupling parameterg, but the procedure always converges to the exact energy
levels given in the tables. The convergence of the procedure can be accelerated by invoking
the renormalization-group tricks [38, 39]. But too extensive numerical computation is not
the aim of the present paper.

7. Discussion

Let us emphasize once again that our main aim here has been to present analytical formulae
that would be relatively simple and at the same time sufficiently accurate in the whole range
of coupling parameters, from zero to infinity. The accuracy of the first approximation, being
3%, seems to be quite satisfactory. Futher approximations can be obtained numerically by
following the iteration procedure described in the previous section, so that an arbitrary
accuracy can be achieved if desired.

Considering analytical expressions we paid attention to technical difficulties that
are typical of such calculations and are often met in the eigenproblems dealing with
nonmonotonous potentials. We suggested the remedies for treating these difficulties. Some
recipes, after being formulated, may look quite simple because they are natural. This
concerns the positive definite shift of section 5. However, as is known, solutions almost
always look simpler afterwards, although they are not evidenta priori. The fact that the
ill-posed problems, which can be treated by the positive shift, repeatedly appear in literature
unambiguously proves that this question has had to be formulated explicitly.

The restricted variation of section 4 suggests a simple way of obtaining asymptotic
expansions in the strong coupling limit. Recall again that we are mainly concerned about
analytical calculations in the course of which the suggested method of freezing one or
some of the variational parameters seems to be the simplest for solving the problem of
multiple solutions. And when we are entangled into heavy numerical computations of
higher approximations, other selection methods [36,37] may be more appropriate.

Recall also that we are using the restricted variation for getting explicit expressions
in the strong coupling limit, wheng → ∞. In this limit, the freezing of the variational
parameterσ does not worsen the approximation since in the restricted as well as in he
unrestricted variationsσ → 0 asg → ∞, as a result of which both procedures quickly
converge to one another. It goes without saying that in the intermediate region ofg, and
especially in the weak coupling limit, wheng → 0, the extremal value ofσ is an important
variational parameter improving the approximation. Then, of course, one should not freeze
σ and we also do not do it.

The variational procedure involving wavefunctions, as described in this paper, is
analogous to the procedure involving path integrals, as expounded in the recent monograph
[40]. The accuracy of the first three approximations for the double-well potential is also
practically the same in both methods. Let us consider, for example, such a delicate
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characteristic as the weak-coupling spectrum slope of lower levels comparing it with that

lim
g→0

d

dg
E±
π (g) = −1

4

following from an exact asymptotic expansion asg → 0. Our first approximation yields
for the slope the value− 21

64 and the first approximation of Kleinert [40] gives− 3
16, which

differ from the exact slope− 1
4. However, in both cases the higher approximations correct

this deficiency.
It is worth noting that, in any method, the whole spectrum of excited states cannot be

obtained without trial wavefunctions. This concerns, of course, the method of path integrals
too [40], in which excitation energies can be obtained through the projection of transition
amplitudes onto the excited states. To realize this projection, one has to invoke a basis of
trial wavefunctions.

Finally, one may ask the question as to whether a method based on trial wavefunctions,
but not involving an approximate Hamiltonian, is generalizable to be used in quantum field
theory and quantum statistical mechanics. In these theories, the basic quantity is the so-
called generating functional which in field theory is also named an effective potential; and
in statistical mechanics, a thermodynamical potential,

F = −T ln Tr e−βH

whereT is temperature andβT ≡ 1. We possess a large arsenal of approximation methods
for calculatingF , when we have in hand an approximate HamiltonianH0 (or an approximate
Lagrangian). Then approximate expressions ofF are obtained by means of an expansion
in powers ofH − H0. But how could we proceed ifH0 is not given? In such a case, we
can resort to the energy representation

F = −T ln
∑
n

exp(−βEn).

If approximate energy levelsE(k)n are calculated, then thek-approximation ofF may be
defined as

F (k) ≡ −T ln
∑
n

exp(−βE(k)n ).

Thus, we obtain the sequence{F (k)|k = 0, 1, 2, . . .} of approximate effective potentials.
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